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Proofs of the Propositions

Lemma 1 Under the assumptions in section 2, the unique competitive equilibrium of the model is character-
ized by equations (9) and (10), where ®; = o (1 - Qj) (1 — ,BQj) — ko; for j = {r,u,my,mn} are constants
that are independent of monetary policy.
Proof: Counsider the system (1), (2) and (TR1) with the exogenous processes (3) to (6). Using (TR1) to
eliminate 7; in (2) gives the system

T = Ky + BE [mi41] + ue, (A1)

v = Bilyen] =~ (6 (mo+mf) + 6, (gt md) = — By mega]) (42)

We conjecture an equilibrium solution
— e ™ Yy
Tt = SarTi + SammMy + SemyMy + Sy Ut

— e ™ Yy
Yt = SyrTy + Sym~My + SymvMy + Syy Ut

and solve for the eight unknown coeflicients s;, ; for h = 7,y and j = r,u,my, mn. Substituting the
conjectured relationships into (A1) and (A2) and using (3) to (6) to evaluate the expectations gives

0 = (Sar — KSyr — BSar0,) 75 + (Swmm — KSymr — BSmm Opyn ) My

+ (57rmy — KSymv — BSrmy me) m% + (Swu — RSyu — 1- 557\'uQu) Ut
and

0 = [(gr - 1) OSyr — ¢7rs7r’f‘ +1- ¢ysyr + SWTQT:I Tf + [(Qm” - 1) 08ym= — (IZSTrSﬂ—mvr - ¢7r - ¢y5ym“ + Samm Qm"'] m?—
+ [(me - 1) OSymy — O Samy — d)y - ¢y3ymy + Samy me} m;? + [(Qu - 1) OSyu — O Smu — ¢y8yu + Squu] Ut

Each coefficient in these expressions must be zero. This gives a system of eight equations in eight unknowns.
Solving for these unknowns gives the coefficients in (9) and (10). (By collecting terms for each of the
shocks 7¢, mT, mY, and u; one can split the system into four sub-systems, each with two equations and two
unknowns. The four subsystems can then be solved separately.)

Uniqueness follows from the determinacy condition (7). ]

Proposition 1

(i) If the only shocks to the model are cost-push shocks, then the optimal policy requires that the Taylor rule
coefficients lie on the affine manifold (11).

(ii) For any ¢, and ¢, satisfying (11), the equilibrium is

1—-LBo, ak (A3)

Ty = Ut , Yt = — Ut
/iz—l—oz(l—ﬂgu)Q a52+(1—69u)2

Proof: Substituting (9) and (10) (and using r{ =m{ =m7 =0 ) into (8) gives

¢y, +(1—-0,)0 )2 < 0, — b )2
V[Ut] <a<¢u+¢y(l_ﬁgu)+ﬁ:¢ﬂ, + (I’“+¢y(l_BQu)+li¢ﬂ,

The first order condition for ¢, requires

0=ak (¢, +(1-0,)0) + (0, — ¢x) (1 = Boy)




which implies (11). The first order condition for ¢, requires

0= aﬁ“(by (¢7r - Qu) + ako (1 - Qu) (¢7r - Qu) - (Qu - ¢7r)2 (1 - /Bgu) :

This condition can be satisfied either by setting ¢, = g, or by (11). This establishes (i).
To establish (ii), use ®, = (1 — o,) (1 — Bo,) 0 — Ko, to write the equilibrium conditions as

T — qby + (1 - Qu) o u
' (179u)(1769u)0+n(¢ﬂ7Qu)+¢y(lfﬁgu) "
Y = Oy — ¢7r U
C 0 —e) (= Be)o +r (0, — )+, (1-Fe.)
Substituting (11) gives (A3). This establishes (ii). [ |

Proposition 2 Suppose r§ and u; are i.i.d. over time and have covariance Cov[r§,us]. The Taylor rule
coefficients satisfying (11°) and ¢, — oo are optimal.
Proof: When r{ and u; are i.i.d. equations (9) and (10) simplify to

K - ¢, to
I T u
R S N e S
1 . o
Yt

= T, — U
O+ byt Ry | Oyt RO,
Plugging them into objective (8), and simplifying, shows that the optimal ¢, and ¢, minimize

(0‘ + ¢, + m¢7r)_2 [(1 + sz) Virel + (a ((by + 0)2 + ((/)77)2) Viu)+2 (cm (qby + O') — (b,r) Cov [rf,ut]}

First we fix the overall strength of the policy response by setting o + ¢, + k¢, = A and minimizing

A2 {(1 +ar®) V [re] + (oz (¢, + 0')2 + (¢ﬂ)2) V[u] +2 (ak (¢, +0) — ¢,) Cov [rf,ut]}

subject to o + ¢, + Ko, = A.
The Lagrangian is

L=A? {(1 +ar?) V [re] + (a (¢, + 0—)2 + (¢7r)2) V[u] +2 (ak (¢, + o) — ¢,) Cov [rf,ut]}Jr)\ [A—0— by — Ko, ]
and the first order conditions w.r.t. ¢, and ¢, respectively, are
A7 {2a (¢, +0) V [u] + 2akCov [rf,us] } = A

A2 {2(¢,) V [u] = 2Cov [ry,us]} = kA

Combining them yields (11°).
Since the objective is decreasing in A, it is optimal to let ¢, approach infinity. |

Proposition 3 Suppose all shocks are white noise, that is, 0, = 0, = 0y = Opr = 0. Then the minimization
of (8) subject to (9) and (10) yields the optimal Taylor rule coefficients given by (12) and (13).

Proof: Setting 0, = 0, = 0y = Oy = 0 in (9) and (10) and substituting into the objective (8) and using
the fact that the shocks are (by assumption) uncorrelated implies that the central bank wants to choose
parameters ¢, and ¢, to minimize

2

(0 + ¢, +ro,) " ([om2 + 1V [P+ [ar? + 1] (6,)* V [mf] + [ar® +1] (¢,)" V [mf] + [a (¢, +0)" + (@)2} v [ut])

The first order condition for ¢, is

{ [omz + 1] V [m{] b, +a (qby + 0) % [ut]} (0 + ¢, + m¢ﬂ) (A4)
= [ar? + 1)V + [ar® + 1]V [7] (6,)? + [ar® + 1] V[m?] (6,)° + [a (¢, +0)" + (qsﬂ)z] V [u]



The first order condition w.r.t. ¢, is
%’r {[om2 + 1] Vimfl+V [ut]} (0 + ¢, + I€¢Tr) (A5)
= [ar? + 1) V2] + [ar? + 1]V [f] (60)? + [ + 1] V [m?] (6,)° + [a (¢, +0)’ + (¢,,)2] V Jue)

It is immediate to see that this implies

b —x [ar? + 1]V m{] + aV [u] akaV [uy]
U Jar2 1V ImI A Vw] Y [as2 + 1V [mF]+V [ug]

(A6)

We can rewrite equation (A5) as
K [omQ + 1] Virl+k [om2 + 1] V [mY] (¢y)2
= 0 [on® +1] (04 0, + k) V] = s [an® + 1] V [mf] (6,)° +
br (746, + 500) V] = 1 [0 (6, +0)" + (62)°] V [u]

Cancelling like terms and simplifying gives

K K
o+, o+,
= ¢ {[ar® + 1]V [mI]+V [u]} — kg, V [u] — kaoV [u]

[ar? + 1]V [m¥] (8,)

[omQ + 1] Vird]+

Using condition (A6) we have
Or ([ar® + 1]V M1+ V [w]) — akoV [ug] = & ([ax® + 1] V Im{] + aV [u]) ¢,

Eliminating this term gives

2

[sz + 1] VIrp] + [omz + 1] V [mY] (qby)

o+, o+ ¢,
= k([ar® + 1]V Im{]+ aV [u]) ¢, — cad,V [u].

Finally, we cancel terms to get (12). To find (13) use condition (A6) and rearrange terms. ]

Model with signal extraction To solve the model with signal extraction, we closely follow the setup in
Svensson and Woodford (2003, 2004). The proofs of the results use the following notation and calculations.

The model can be written as
Xiy1 X ) . ( S¢41 )
. —A B(i, — A7
(g )=a( 5 )+ma-o+ (% (A7)

— y r. — Yy "o — ’. F_ (01 ;
where Xy = (r,u,my,mf)"; spr1 = (71,641,614 1:6041) 5 ¢ = (Y, ) s and B = ( o 1) Parti-

tion the matrices A and B as follows

Ay A Aie By
A= = B =
<A2> <A21 A22>’ <Bz>

and let

o o o o
o O oo
o O o o

0
0 -+ 0o —£ 1
= B = B B =
A <_1 0 0 O>’A22 < o O>B2 (
The flow objective is

°) (49)

O =

yf + omt2 = x;Wzt, W = <



and the observation equations are

oy X, . B /(00 10 (10
Zt_(ﬂ';n>_D<th)’WlthD_(Dl’D2)7Dl_(0 00 1 andDQ— 0 1 (Ag)

Notice that the measurement errors are included in X;. This allows for arbitrary persistence of both types
of measurement error.
The central bank’s information set is I&F = {@,yﬁj,wﬁj 17> O} where © is a vector of all model
parameters.
We write the Taylor rule as
it —p=Fury (A10)

where F' = (wy,z/},r). Notice the difference to Svensson and Woodford who write the policy as a linear
function of the estimates of the state variables Xj;.
Next, we conjecture that
Ty = GXppe (A11)

Then the upper block of (A7) gives
Xiv1 = A X + 5041

and taking expectations (based on ICF) yields
Xiv1pe = A X

Taking expectations of the lower block of (A7) gives

Exy 1)y = As1 Xy + Aoy + Ba (i — p) .
Combining these equations with (A10) and (A11), we arrive at

e = [Aza] ! (—A21 + EGA,, — BQFG) X,

Hence, G must satisfy

G = [Ag] " (—A21 + BEGAy, — BQFG) . (A12)

Next we conjecture that
2 = G'X; + (G - GY) Xy (A13)

and rewrite the observation equation (A9) as

Zt = DlXt + DQZEt
= (D1 +D:G") Xy + Dy (G- G") Xy

Following Svensson and Woodford,
Zy = LXt + M Xy (A14)

where
L = (D1 + DyG") (A15)

and
M =D, (G-G").

The state equation of the Kalman filter is
Xiy1 = A X + 841

and the observation equation is (A14). Svensson and Woodford (2004) show that the Kalman filter updating
equation takes the form
Xt\t = Xt\tfl + KL (Xt — Xt|t71) (AlG)

(their equation 26 with v; = 0) and that it is possible to write
Xipaperr = (T 4+ KM) ™ [(I = KL) An Xy + K Ziya] (A17)

(their equation 30) where
K =PL (LPL)™". (A18)



Furthermore,
P—FE [(Xt — Xyeo) (X — Xt“,l)’} — Ay, [P — pL'(LPL)"! LP} L, (A19)

where Y is the covariance matrix of the errors s 1.
Finally, one needs to find G'. Again, following Svensson and Woodford (2003, 2004) we obtain

G = [Ags] ! (—A21 + EGKLAy, + EG' (I — KL) All) . (A20)

Lemma 2 The central bank’s estimates of inflation and the output gap satisfy (14) and (15) where ®,. and
P, are defined as in Lemma 1.

Proof: Take conditional expectations based on the central bank’s information set I¢? of equations (1) to
(4) to obtain

T = KY + BTop1)e + U
1/. .
Yt = Y1)t — ps (Zt =P = Ty — 7Tt+1|t)
73?+1|1k = erfhs s and Upp1)p = 0, Ut

Imposing the Taylor rule (TR2) and repeating steps in the proof of Lemma 1 yields the desired result. N

Lemma A1l The welfare objective (8) can be decomposed as follows

(1-H)E iﬂt (v + M?)] = (aB (73] +B [v2,]) + (aB | (m = 700)”] + B [ (5 = )]
t=0
Proof: See Svensson and Woodford (2003, 2004). [ ]

Lemma A2 oF {(ﬂ't — 7rt|t)2} +E [(yt - yt|t)2} = tr {P (G* (I - KL))/WG1 (I - KL)} where I is the
identiy matriz.
Proof: Define T = oE {(m — Wt‘t)2:| + E [(yt — ym)ﬂ and notice that T = E [(:ct - mt‘t)/ w (zt — xt|t)]
where W is defined in (A8) above. Equation (A13) implies that
Ty — mt|t = GlXt + (G — Gl) Xt|t — Gtht = Gl (Xt — tht)
so we obtain , ,
T=B[(X: - Xy.) (6") WG (X, - Xy)| .

Next subtract X;; from X; and use (A16) to get

X, =Xy = Xo— (Xypor + KL (X, — Xyi))
= (I-KL) (Xt — Xye-1)
Then
T = E [(Xt — X)) (I = KLY (GYY WG (I — KL) (X; — Xﬂt,l)]
- B [tr {(Xt — Xypo1) (Xo = Xyun) (I = KLY (G WG (I - KL)H
= [B[(X0 ~ Xyer) (X = Xyot) | (G (= K1) WG (I - KI)|
where ¢r (-) is the trace operator. Using (A19) yields the desired result. m

Lemma A3 Suppose all shocks are contemporaneously uncorrelated with each other and i.i.d over time.
Then the term ol [(ﬂ't — 7Tt‘t)2} +E {(yt — yt|t)2} 1s independent of the Taylor rule coefficients.

Proof: Given Lemma A2, it is sufficient to show that T is independent of the Taylor rule coefficients. If all
shocks are i.i.d. over time then Ay; = 04x4 and G' as defined in (A20) reduces to

G = — [Ag) " A



which is independent of policy. Furthermore, P = 3, (see A19) and because G! is independent of policy, so
is L (defined in A15). Then K = PL' (LPL') 'is independent of policy (equation A18). As a result, T is
independent of policy. ]

Lemma A4 Suppose all shocks are contemporaneously uncorrelated with each other and i.i.d over time.

Then rf‘t and uy; are independent of the Taylor rule coefficients.

Proof: In the iid case with A7 = 044, equation (A17) reduces to
X = T+ KM) VK Zy44
Combining this with (A14) gives
Xge=(I+EKEM) " KZ = (I +KM) 'K (LX; + MXy;).

Rearranging yields

tht — KLXt
In the proof of Lemma A3 we showed that K and L are independent of policy when shocks are i.i.d. Hence
rfl . and wu,; are independent of the Taylor rule coefficients. |

Proposition 4 Suppose all shocks are contemporaneously uncorrelated with each other and i.i.d over time.
Then the coefficients {wz,w;} satisfying (117) and v, — oo are optimal.

Proof: Lemmas Al and A3 imply that minimizing objective (8) is equivalent to minimizing «E [ﬂ'f‘ t} +
E {yfl t] Furthermore, equations (14) and (15) simplify to

K Y, +o
rf‘t + ¢ Uyt
o+, +KY, o+, + K,

Tt =

1 e s
T — U
oA, e, T o, R,

in the i.i.d. case. Lemma A4 shows that rfl , and u;; are independent of the Taylor rule coefficients, but
importantly, their covariance need not to be zero. The remainder of the proof is identical to the proof of

Proposition 2. |

Ytjt =

Proposition 5 Suppose the model is given by equations (1) to (6), (TR2), and the observation equations
M =1 +mF and y" = y; +m{. The central bank uses the Kalman filter with information set IFE to
estimate the true state of the economy. Suppose further that V [u;] = 0 and that o,,, = 0,,» = 0. Then, for

any Taylor rule (TR2), with coefficients ¥, and ., there exist coefficients {&sy, (357,, f/} such that the policy

rule (TR3) generates the same equilibrium paths for all variables.
Proof: Under the assumption that V [u;] = 0 and ¢,,,, = 0,,, = 0, it is possible to write the model as follows

m

e r 3 0 ! A ’ p
Xt:Tt7St+1=€t+1»xt:<gi>7E:<U 1)’A:(Az A;z >7B:<B;>

)n-(2)

[ehed[g

0 _&
A =0, A=(0 0),B1=0, Azlz(l)w‘lzz:( oﬁ

The observation equations are

_ ([ v _ Xt {0 10
Zt_(ﬂ;n)+vt_D|:,Z't:|+,Ut7D_<0 0 1
Yy

with v, = (mt,mf)/. Furthermore, D, = (0,0)' and Dy = I, Notice that Ai; is a scalar. Because v; is

nonzero, the equations (and matrices) associated with the Kalman filter change somewhat (see Svensson and

Woodford 2004) though (A17) continues to hold. Since A; is a scalar, KL and KM are also scalars.
Using (A10) and (A11), write the interest rate as

it—p= (wyﬂ/%r) (yt\tﬂft\t)l = FQ?t\t = FGXt\t-



Using (A17) and substituting backwards yields

e J
iv=Y FGI+KM)"|(I-KL) Ay (I+KM)"'| KZ_;
j=0

Since KL, and KM are scalars, set o = (I — KL) Ay; (I + KM)™". Then write

iy =Y FG(I+ KM) "W KZy;=FGI+KM) ' KZ + Viy_1 = o,y + dpmy" + Vip_1
=0

where (% &sﬂ) —FGU+KM)"K.



