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Proofs of the Propositions

Lemma 1 Under the assumptions in section 2, the unique competitive equilibrium of the model is character-
ized by equations (9) and (10), where Φj = σ

(
1− %j

) (
1− β%j

)
− κ%j for j = {r, u,my,mπ} are constants

that are independent of monetary policy.
Proof : Consider the system (1), (2) and (TR1) with the exogenous processes (3) to (6). Using (TR1) to
eliminate it in (2) gives the system

πt = κyt + βEt [πt+1] + ut, (A1)

yt = Et [yt+1]−
1

σ

(
φπ (πt +mπ

t ) + φy (yt +my
t )− ret − Et [πt+1]

)
. (A2)

We conjecture an equilibrium solution

πt = sπrr
e
t + sπmπm

π
t + sπmym

y
t + sπuut

yt = syrr
e
t + symπm

π
t + symym

y
t + syuut

and solve for the eight unknown coeffi cients sh,j for h = π, y and j = r, u,my,mπ. Substituting the
conjectured relationships into (A1) and (A2) and using (3) to (6) to evaluate the expectations gives

0 = (sπr − κsyr − βsπr%r) ret + (sπmπ − κsymπ − βsπmπ%mπ )mπ
t

+ (sπmy − κsymy − βsπmy%my )my
t + (sπu − κsyu − 1− βsπu%u)ut

and

0 =
[
(%r − 1)σsyr − φπsπr + 1− φysyr + sπr%r

]
ret +

[
(%mπ − 1)σsymπ − φπsπmπ − φπ − φysymπ + sπmπ%mπ

]
mπ
t

+
[
(%my − 1)σsymy − φπsπmy − φy − φysymy + sπmy%my

]
my
t +

[
(%u − 1)σsyu − φπsπu − φysyu + sπu%u

]
ut.

Each coeffi cient in these expressions must be zero. This gives a system of eight equations in eight unknowns.
Solving for these unknowns gives the coeffi cients in (9) and (10). (By collecting terms for each of the
shocks ret , m

π
t , m

y
t , and ut one can split the system into four sub-systems, each with two equations and two

unknowns. The four subsystems can then be solved separately.)
Uniqueness follows from the determinacy condition (7). �

Proposition 1
(i) If the only shocks to the model are cost-push shocks, then the optimal policy requires that the Taylor rule
coeffi cients lie on the affi ne manifold (11).
(ii) For any φ∗π and φ

∗
y satisfying (11), the equilibrium is

πt =
1− β%u

κ2 + α (1− β%u)
2ut, yt = − ακ

ακ2 + (1− β%u)
2ut. (A3)

Proof : Substituting (9) and (10) (and using ret = my
t = mπ

t = 0 ) into (8) gives

V [ut]

(
α

(
φy + (1− %u)σ

Φu + φy (1− β%u) + κφπ

)2
+

(
%u − φπ

Φu + φy (1− β%u) + κφπ

)2)

The first order condition for φπ requires

0 = ακ
(
φy + (1− %u)σ

)
+ (%u − φπ) (1− β%u)
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which implies (11). The first order condition for φy requires

0 = ακφy (φπ − %u) + ακσ (1− %u) (φπ − %u)− (%u − φπ)
2

(1− β%u) .

This condition can be satisfied either by setting φπ = %u or by (11). This establishes (i).
To establish (ii), use Φu = (1− %u) (1− β%u)σ − κ%u to write the equilibrium conditions as

πt =
φy + (1− %u)σ

(1− %u) (1− β%u)σ + κ (φπ − %u) + φy (1− β%u)
ut,

yt =
%u − φπ

(1− %u) (1− β%u)σ + κ (φπ − %u) + φy (1− β%u)
ut.

Substituting (11) gives (A3). This establishes (ii). �

Proposition 2 Suppose ret and ut are i.i.d. over time and have covariance Cov [ret , ut]. The Taylor rule
coeffi cients satisfying (11’) and φy →∞ are optimal.
Proof: When ret and ut are i.i.d. equations (9) and (10) simplify to

πt =
κ

σ + φy + κφπ
ret +

φy + σ

σ + φy + κφπ
ut

yt =
1

σ + φy + κφπ
ret −

φπ
σ + φy + κφπ

ut

Plugging them into objective (8), and simplifying, shows that the optimal φy and φπ minimize(
σ + φy + κφπ

)−2 [(
1 + ακ2

)
V [re] +

(
α
(
φy + σ

)2
+ (φπ)

2
)
V [u] + 2

(
ακ
(
φy + σ

)
− φπ

)
Cov [ret , ut]

]
First we fix the overall strength of the policy response by setting σ + φy + κφπ = A and minimizing

A−2
{(

1 + ακ2
)
V [re] +

(
α
(
φy + σ

)2
+ (φπ)

2
)
V [u] + 2

(
ακ
(
φy + σ

)
− φπ

)
Cov [ret , ut]

}
subject to σ + φy + κφπ = A.

The Lagrangian is

L = A−2
{(

1 + ακ2
)
V [re] +

(
α
(
φy + σ

)2
+ (φπ)

2
)
V [u] + 2

(
ακ
(
φy + σ

)
− φπ

)
Cov [ret , ut]

}
+λ
[
A− σ − φy − κφπ

]
and the first order conditions w.r.t. φy and φπ, respectively, are

A−2
{

2α
(
φy + σ

)
V [u] + 2ακCov [ret , ut]

}
= λ

A−2 {2 (φπ)V [u]− 2Cov [ret , ut]} = κλ

Combining them yields (11’).
Since the objective is decreasing in A, it is optimal to let φy approach infinity. �

Proposition 3 Suppose all shocks are white noise, that is, %r = %u = %my = %mπ = 0. Then the minimization
of (8) subject to (9) and (10) yields the optimal Taylor rule coeffi cients given by (12) and (13).
Proof : Setting %r = %u = %my = %mπ = 0 in (9) and (10) and substituting into the objective (8) and using
the fact that the shocks are (by assumption) uncorrelated implies that the central bank wants to choose
parameters φy and φπ to minimize(
σ + φy + κφπ

)−2 ([
ακ2 + 1

]
V [rnt ] +

[
ακ2 + 1

]
(φπ)

2
V [mπ

t ] +
[
ακ2 + 1

] (
φy
)2
V [my

t ] +
[
α
(
φy + σ

)2
+ (φπ)

2
]
V [ut]

)
The first order condition for φy is{[

ακ2 + 1
]
V [my

t ]φy + α
(
φy + σ

)
V [ut]

} (
σ + φy + κφπ

)
(A4)

=
[
ακ2 + 1

]
V [rnt ] +

[
ακ2 + 1

]
V [mπ

t ] (φπ)
2

+
[
ακ2 + 1

]
V [my

t ]
(
φy
)2

+
[
α
(
φy + σ

)2
+ (φπ)

2
]
V [ut]
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The first order condition w.r.t. φπ is

φπ
κ

{[
ακ2 + 1

]
V [mπ

t ] + V [ut]
} (
σ + φy + κφπ

)
(A5)

=
[
ακ2 + 1

]
V [rnt ] +

[
ακ2 + 1

]
V [mπ

t ] (φπ)
2

+
[
ακ2 + 1

]
V [my

t ]
(
φy
)2

+
[
α
(
φy + σ

)2
+ (φπ)

2
]
V [ut]

It is immediate to see that this implies

φπ = κ

[
ακ2 + 1

]
V [my

t ] + αV [ut]

[ακ2 + 1]V [mπ
t ] + V [ut]

φy +
ακσV [ut]

[ακ2 + 1]V [mπ
t ] + V [ut]

(A6)

We can rewrite equation (A5) as

κ
[
ακ2 + 1

]
V [rnt ] + κ

[
ακ2 + 1

]
V [my

t ]
(
φy
)2

= φπ
[
ακ2 + 1

] (
σ + φy + κφπ

)
V [mπ

t ]− κ
[
ακ2 + 1

]
V [mπ

t ] (φπ)
2

+

φπ
(
σ + φy + κφπ

)
V [ut]− κ

[
α
(
φy + σ

)2
+ (φπ)

2
]
V [ut]

Cancelling like terms and simplifying gives

κ

σ + φy

[
ακ2 + 1

]
V [rnt ] +

κ

σ + φy

[
ακ2 + 1

]
V [my

t ]
(
φy
)2

= φπ
{[
ακ2 + 1

]
V [mπ

t ] + V [ut]
}
− καφyV [ut]− κασV [ut]

Using condition (A6) we have

φπ
([
ακ2 + 1

]
V [mπ

t ] + V [ut]
)
− ακσV [ut] = κ

([
ακ2 + 1

]
V [my

t ] + αV [ut]
)
φy

Eliminating this term gives

κ

σ + φy

[
ακ2 + 1

]
V [rnt ] +

κ

σ + φy

[
ακ2 + 1

]
V [my

t ]
(
φy
)2

= κ
([
ακ2 + 1

]
V [my

t ] + αV [ut]
)
φy − καφyV [ut] .

Finally, we cancel terms to get (12). To find (13) use condition (A6) and rearrange terms. �

Model with signal extraction To solve the model with signal extraction, we closely follow the setup in
Svensson and Woodford (2003, 2004). The proofs of the results use the following notation and calculations.
The model can be written as(

Xt+1

ẼEt [xt+1]

)
= A

(
Xt

xt

)
+B (it − ρ) +

(
st+1

0

)
(A7)

where Xt = (ret , ut,m
y
t ,m

π
t )
′
; st+1 =

(
εrt+1, ε

u
t+1, ε

y
t+1, ε

π
t+1

)′
; xt = (yt, πt)

′
; and Ẽ =

(
0 1
σ 1

)
. Parti-

tion the matrices A and B as follows

A =

(
A1
A2

)
=

(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
and let

A11 =


%r 0 0 0
0 %u 0 0
0 0 %my 0
0 0 0 %mπ

 , A12 =


0 0
0 0
0 0
0 0

 , B1 =


0
0
0
0


A21 =

(
0 − 1

β 0 0

−1 0 0 0

)
, A22 =

(
−κβ

1
β

σ 0

)
B2 =

(
0
1

)
The flow objective is

y2t + απ2t = x′tWxt, W =

(
1 0
0 α

)
(A8)
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and the observation equations are

Zt =

(
ymt
πmt

)
= D

(
Xt

xt

)
, with D = (D1, D2) , D1 =

(
0 0 1 0
0 0 0 1

)
and D2 =

(
1 0
0 1

)
(A9)

Notice that the measurement errors are included in Xt. This allows for arbitrary persistence of both types
of measurement error.
The central bank’s information set is ICBt =

{
Θ, ymt−j , π

m
t−j : j ≥ 0

}
where Θ is a vector of all model

parameters.
We write the Taylor rule as

it − ρ = Fxt|t (A10)

where F =
(
ψy, ψπ

)
. Notice the difference to Svensson and Woodford who write the policy as a linear

function of the estimates of the state variables Xt.
Next, we conjecture that

xt|t = GXt|t (A11)

Then the upper block of (A7) gives
Xt+1 = A11Xt + st+1

and taking expectations (based on ICBt ) yields

Xt+1|t = A11Xt|t.

Taking expectations of the lower block of (A7) gives

Ẽxt+1|t = A21Xt|t +A22xt|t +B2 (it − ρ) .

Combining these equations with (A10) and (A11), we arrive at

xt|t = [A22]
−1
(
−A21 + ẼGA11 −B2FG

)
Xt|t.

Hence, G must satisfy

G = [A22]
−1
(
−A21 + ẼGA11 −B2FG

)
. (A12)

Next we conjecture that
xt = G1Xt +

(
G−G1

)
Xt|t (A13)

and rewrite the observation equation (A9) as

Zt = D1Xt +D2xt

=
(
D1 +D2G

1
)
Xt +D2

(
G−G1

)
Xt|t

Following Svensson and Woodford,
Zt = LXt +MXt|t (A14)

where
L =

(
D1 +D2G

1
)

(A15)

and
M = D2

(
G−G1

)
.

The state equation of the Kalman filter is

Xt+1 = A11Xt + st+1

and the observation equation is (A14). Svensson and Woodford (2004) show that the Kalman filter updating
equation takes the form

Xt|t = Xt|t−1 +KL
(
Xt −Xt|t−1

)
(A16)

(their equation 26 with vt = 0) and that it is possible to write

Xt+1|t+1 = (I +KM)
−1 [

(I −KL)A11Xt|t +KZt+1
]

(A17)

(their equation 30) where
K = PL′ (LPL′)

−1
. (A18)
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Furthermore,

P = E
[(
Xt −Xt|t−1

) (
Xt −Xt|t−1

)′]
= A11

[
P − PL′ (LPL′)−1 LP

]
A′11 + Σs (A19)

where Σs is the covariance matrix of the errors st+1.
Finally, one needs to find G1. Again, following Svensson and Woodford (2003, 2004) we obtain

G1 = [A22]
−1
(
−A21 + ẼGKLA11 + ẼG1 (I −KL)A11

)
. (A20)

Lemma 2 The central bank’s estimates of inflation and the output gap satisfy (14) and (15) where Φr and
Φu are defined as in Lemma 1.
Proof: Take conditional expectations based on the central bank’s information set ICBt of equations (1) to
(4) to obtain

πt = κyt + βπt+1|t + ut|t

yt = yt+1|t −
1

σ

(
it − ρ− ret|t − πt+1|t

)
ret+1|t = %rr

e
t|t , and ut+1|t = %uut|t

Imposing the Taylor rule (TR2) and repeating steps in the proof of Lemma 1 yields the desired result. �

Lemma A1 The welfare objective (8) can be decomposed as follows

(1− β)E

[ ∞∑
t=0

βt
(
y2t + απ2t

)]
=
(
αE
[
π2t|t

]
+ E

[
y2t|t

])
+
(
αE
[(
πt − πt|t

)2]
+ E

[(
yt − yt|t

)2])
Proof: See Svensson and Woodford (2003, 2004). �

Lemma A2 αE
[(
πt − πt|t

)2]
+ E

[(
yt − yt|t

)2]
= tr

[
P
(
G1 (I −KL)

)′
WG1 (I −KL)

]
where I is the

identiy matrix .

Proof: Define T = αE
[(
πt − πt|t

)2]
+ E

[(
yt − yt|t

)2]
and notice that T = E

[(
xt − xt|t

)′
W
(
xt − xt|t

)]
where W is defined in (A8) above. Equation (A13) implies that

xt − xt|t = G1Xt +
(
G−G1

)
Xt|t −GXt|t = G1

(
Xt −Xt|t

)
so we obtain

T = E
[(
Xt −Xt|t

)′ (
G1
)′
WG1

(
Xt −Xt|t

)]
.

Next subtract Xt|t from Xt and use (A16) to get

Xt −Xt|t = Xt −
(
Xt|t−1 +KL

(
Xt −Xt|t−1

))
= (I −KL)

(
Xt −Xt|t−1

)
Then

T = E
[(
Xt −Xt|t−1

)′
(I −KL)

′ (
G1
)′
WG1 (I −KL)

(
Xt −Xt|t−1

)]
= E

[
tr
[(
Xt −Xt|t−1

) (
Xt −Xt|t−1

)′
(I −KL)

′ (
G1
)′
WG1 (I −KL)

]]
= tr

[
E
[(
Xt −Xt|t−1

) (
Xt −Xt|t−1

)′] (
G1 (I −KL)

)′
WG1 (I −KL)

]
where tr (·) is the trace operator. Using (A19) yields the desired result. �

Lemma A3 Suppose all shocks are contemporaneously uncorrelated with each other and i.i.d over time.
Then the term αE

[(
πt − πt|t

)2]
+ E

[(
yt − yt|t

)2]
is independent of the Taylor rule coeffi cients.

Proof: Given Lemma A2, it is suffi cient to show that T is independent of the Taylor rule coeffi cients. If all
shocks are i.i.d. over time then A11 = 04×4 and G1 as defined in (A20) reduces to

G1 = − [A22]
−1
A21
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which is independent of policy. Furthermore, P = Σs (see A19) and because G1 is independent of policy, so
is L (defined in A15). Then K = PL′ (LPL′)

−1is independent of policy (equation A18). As a result, T is
independent of policy. �

Lemma A4 Suppose all shocks are contemporaneously uncorrelated with each other and i.i.d over time.
Then ret|t and ut|t are independent of the Taylor rule coeffi cients.
Proof: In the iid case with A11 = 04×4, equation (A17) reduces to

Xt+1|t+1 = (I +KM)
−1
KZt+1

Combining this with (A14) gives

Xt|t = (I +KM)
−1
KZt = (I +KM)

−1
K
(
LXt +MXt|t

)
.

Rearranging yields
Xt|t = KLXt.

In the proof of Lemma A3 we showed that K and L are independent of policy when shocks are i.i.d. Hence
ret|t and ut|t are independent of the Taylor rule coeffi cients. �

Proposition 4 Suppose all shocks are contemporaneously uncorrelated with each other and i.i.d over time.
Then the coeffi cients

{
ψ∗y, ψ

∗
π

}
satisfying (11”) and ψy →∞ are optimal.

Proof: Lemmas A1 and A3 imply that minimizing objective (8) is equivalent to minimizing αE
[
π2t|t

]
+

E
[
y2t|t

]
. Furthermore, equations (14) and (15) simplify to

πt|t =
κ

σ + ψy + κψπ
ret|t +

ψy + σ

σ + ψy + κψπ
ut|t

yt|t =
1

σ + ψy + κψπ
ret|t −

ψπ
σ + ψy + κψπ

ut|t

in the i.i.d. case. Lemma A4 shows that ret|t and ut|t are independent of the Taylor rule coeffi cients, but
importantly, their covariance need not to be zero. The remainder of the proof is identical to the proof of
Proposition 2. �

Proposition 5 Suppose the model is given by equations (1) to (6), (TR2), and the observation equations
πmt = πt + mπ

t and ymt = yt + my
t . The central bank uses the Kalman filter with information set I

CB
t to

estimate the true state of the economy. Suppose further that V [ut] = 0 and that %my = %mπ = 0. Then, for

any Taylor rule (TR2), with coeffi cients ψy and ψπ, there exist coeffi cients
{
φ̃y, φ̃π, ν̃

}
such that the policy

rule (TR3) generates the same equilibrium paths for all variables.
Proof: Under the assumption that V [ut] = 0 and %my = %mπ = 0, it is possible to write the model as follows

Xt = ret , st+1 = εrt+1, xt =

(
yt
πt

)
, Ẽ =

(
0 1
σ 1

)
, A =

(
A11 A12
A21 A22

)
, B =

(
B1
B2

)

A11 = %r, A12 =
(

0 0
)
, B1 = 0, A21 =

(
0
−1

)
, A22 =

(
−κβ

1
β

σ 0

)
B2 =

(
0
1

)
The observation equations are

Zt =

(
ymt
πmt

)
+ vt = D

[
Xt

xt

]
+ vt, D =

(
0 1 0
0 0 1

)
with vt = (my

t ,m
π
t )
′. Furthermore, D1 = (0, 0)

′ and D2 = I2 Notice that A11 is a scalar. Because vt is
nonzero, the equations (and matrices) associated with the Kalman filter change somewhat (see Svensson and
Woodford 2004) though (A17) continues to hold. Since A11 is a scalar, KL and KM are also scalars.
Using (A10) and (A11), write the interest rate as

it − ρ =
(
ψy, ψπ

) (
yt|t, πt|t

)′
= Fxt|t = FGXt|t.
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Using (A17) and substituting backwards yields

it =

∞∑
j=0

FG (I +KM)
−1
[
(I −KL)A11 (I +KM)

−1
]j
KZt−j

Since KL, and KM are scalars, set ν̃ = (I −KL)A11 (I +KM)
−1. Then write

it =

∞∑
j=0

FG (I +KM)
−1
ν̃jKZt−j = FG (I +KM)

−1
KZt + ν̃it−1 = φ̃yy

m
t + φ̃ππ

m
t + ν̃it−1

where
(
φ̃y, φ̃π

)
= FG (I +KM)

−1
K. �
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